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D'Alembert's paradox states that an inviscid (non-viscous), incompressible flow produces no drag on an object surrounded by 

such fluid, and it does not produce any lift. It is named after Jean le Rond d'Alembert. In other words, the net force which a moving 

inviscid uncompressible fluid exerts on the body is zero. 

Discussion 

If a fluid is viscous, then its flow cannot be irrotational: 

viscous → ¬ irrotational (1)  

This is not true for some trivial cases, like fluid at rest or in uniform motion, but becomes evident with the simplest non-trivial 

viscous flows, like the Poiseuille flow. Conversely, if flow is irrotational, then the fluid is inviscid: 

irrotational → ¬ viscous. (from proposition (1), by Modus tollens)  

But if flow is solenoidal (rotational), then must it also be viscous? (i.e. is the converse of proposition (1) also true?) Solenoidal has 

been defined as incompressible, not as rotational. However, solenoidal has a definite connotation of being rotational. 

if (  → viscous) then (  →  ). 

 

What if  (i.e. divergence is zero) and  (i.e. curl is zero)? Then the fluid is Laplacian. An object moving 

through a Laplacian fluid which is at rest (except locally for its displacement by and around the object) suffers no drag from the 

fluid. This is a paradox: real fluids produce drag. For example: air is known to produce drag, otherwise parachutes would be 

useless. If a gas produces drag, how could a liquid not produce drag? (Since liquids are denser than gases. On the other hand, gases 

are compressible, and D'Alembert's paradox applies only to incompressible fluids.) 

Perhaps the answer to this paradox is that Laplacian fluids do not really exist in nature: they are a mathematical abstraction. This 

would imply that 

 

 

This means that solenoidal fields, which have been defined as having zero divergence (solenoidal ↔ incompressible), also 

rotational. But the word "solenoidal" connotes "rotational", so proposition (2) appears to make sense as a resolution of the paradox. 

Proposition (2) means that: 

solenoidal → rotational.  

But st. (2) was derived by assuming that: 

solenoidal → viscous  

or 

rotational → viscous.  

If this is true then 

viscous ↔ rotational     (warning: this might not be true).  

Therefore 
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inviscid ↔ irrotational (warning: this might not be true),  

and we are back to square one: the definition of D'Alembert's Paradox: Laplacian flow produces no drag. 

Examples and further discussion 

Rotational means non-zero curl. Proposition (1) above stated that 

viscous → rotational,  

but does 

rotational → viscous?  

Example One: let the velocity field v be defined by 

 

 

This is an infinitely large uniform vortex (uniform : it moves like a solid). But it cannot be real (see ontology): it would have 

infinite kinetic energy. Curl is constant and non-zero. But is it viscous? The answer appears to be no: because the vortex moves 

uniformly as if it were a solid, not like a liquid. Solids are not viscous. Or if solids are viscous, then they are infinitely so: viscosity 

does not apply to solids. Also, equation (3) could describe the result of a passive transformation: the fluid is actually not moving (v 

= 0), but the observer at the origin is rotating with constant angular speed. Then the fluid has no chance of behaving in a viscous 

way. 

Example Two: Now imagine a finite, cylindrical uniform vortex: 

 

 

 

 

The vorticity (curl) is constant inside the vortex and zero outside it: a discontinuity of the curl at the boundary of the vortex (but 

the velocity field itself is continuous and differentiable). 

Outside the vortex the fluid is still moving in circular streamlines, but the vorticity is zero. How can this be so? Because the 

vorticity of the circular motion is cancelled out exactly by shearing: be the deceleration of the fluid with distance: this shearing 

strain by itself is viscous, but it is cancelled out by the circular motion: irrotational, therefore non-viscous. Is viscosity acting here? 

Apparently not, even though the vortex is rotational, at least not mathematically, but perhaps it is acting physically. 

Example Three: Imagine a jet stream, fluid moving uniformly inside an imaginary tube, like a laser beam. There is no physical 

boundary between the jet stream and the surrounding motionless fluid. The vorticity at the boundary is infinite, everywhere else it 

is zero: vorticity is discontinuous (and the velocity field is discontinuous, and perhaps not everywhere differentiable). The problem 

is lack of viscosity. Viscosity would smooth out the vorticity (curl). Viscosity is a type of friction which dissipates energy. It is a 

shearing force. 

Example Four: Change the last example so that the jet stream moves around in a ring (a torus). Let the fluid inside the ring move 

as if it were a solid. Then the vorticity throughout the ring is constant and non-zero, but the vorticity outside the ring is constant 

and zero. The velocity field is discontinuous and not everywhere differentiable, because vorticity at the boundaries of the ring is 

infinite. 

If the ring were a solid and the surroundings were also solid, then the infinite vorticity would be an indicator of the place where 

friction between the solids would occur. With solids, friction is localized at the interfaces between different solids. With fluids, 

viscosity is spread out throughout the fluid and tends to smooth out discontinuities in the velocity field. 

Viscosity is a shearing force: (F/A)/d. It is a reaction, not a cause. The cause is vorticity which is due to shear: velocities which are 

parallel and adjacent but unequal in magnitude. Regions of high vorticity are hot spots which viscosity would tend to reduce and 

diffuse. 
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Inviscid fluids are a mathematical idealization: all fluids should have some viscosity; 

rotational → viscous  

then is trivially true for physical fluids. Then non-trivial physical flows are both viscous and rotational, not irrotational. 

A liquid is, for practical purposes, incompressible (indeed, that is how liquids retain volume when they change containers. Cf. 

Piaget's test for concrete operational stage of cognitive development). If it were also non-viscous, and therefore irrotational, then 

the liquid could not be stirred with a spoon to form a vortex: the spoon could not drag the liquid, because the liquid produces no 

drag on the spoon. Mathematically, this is due to the liquid being irrotational and therefore Laplacian. Physically, this is due to the 

fluid being non-viscous: it is unable to attach itself frictionally to the spoon. 

External link 

� Article on d'Alembert's paradox by A. Dorsey 
(http://www.phys.virginia.edu/classes/311/notes/fluids1/fluids11/node19.html)  
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